Innovative Use of IMC Process and Laminate **Thermoforming Process** LIGHT WEIGHTING

AutoDynamic Technologies & Solutions Pvt Ltd "Delivering Ideas to Products"

IMC PROCESS IMC / LFT Principle

Get the Benefit together

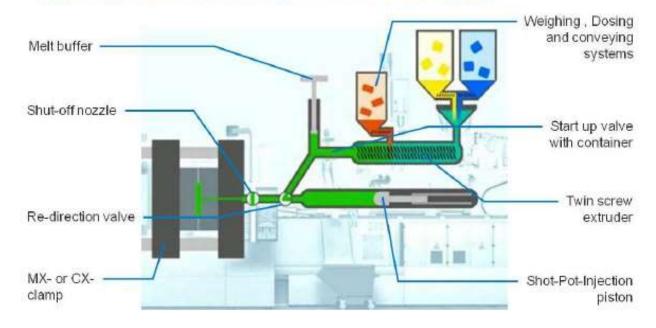
Injection Molded Composite Process - Principle

Injection Molding:

Single screw

Material processing

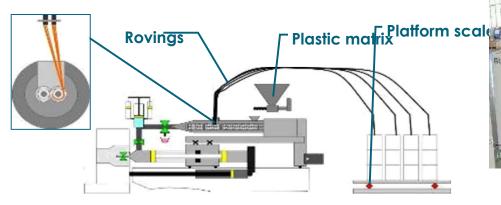
Discontinuous process


Extrusion:

Twin screw

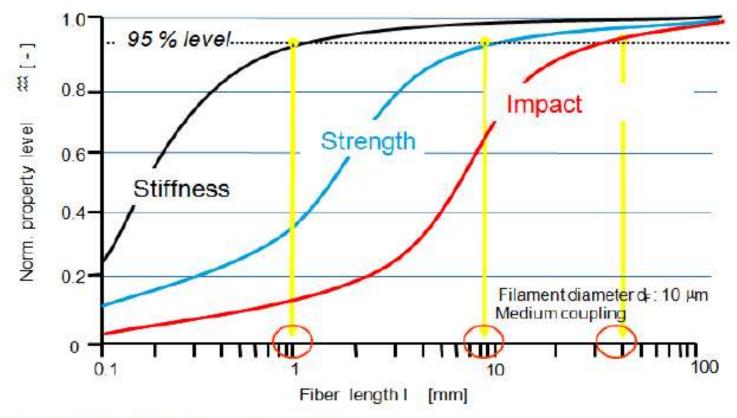
Material compounding

Continuous process


Continuous and discontinuous - Two in One

IMC PRINCIPLE

What makes an IMC suitable for long glass fiber applications? IMC with platform scale



Material Properties

Influence of fiber length on mechanical properties

Long glass fiber - PP/GF (qualitative)

Source: FH Rosenheim, Prof. Schemme, based on Thomason& Vlug

Note - Testing done on part level, test specimens cut from the actual molded part.

Part thickness was in the range of 2.5 to 2.7 mm.

Fiber length - GF Injection molding = < 0.5 mm

- LFT / LGF Injection Molding = < 1mm
- IMC = minimum 5mm & even more than 30mm in MANY greas

Sr. No	Property	Specification	Condition	Unit	Conventional Injection molded part		IN	/IC molded	part	
1	MATERIAL				PP GF 20 (APPCOM G2CC BK UV)	PP GF 20	PP GF 15	PP GF 10	PP GF 5	PP MFGF 1010
2	FILLER CONTENT	ASTM D 5630	800 °C	%	20	20.7	15.82	11.25	5.54	19.46
3	IMPACT STRENGTH	ASTM D 256	23 °C	kg.cm/cm	3.98	10.95	7.91	6.41	4.72	6.69
4	TENSILE STRENGTH	ASTM D 638	23 °C	kgf/cm²	109.5	480	475	453	375	439
5	ELONG. At Break	ASTM D 638	23 °C	%		4.9	6.03	6.24	8.11	6.69
6	FLEXURAL MODULUS	ASTM D 790	23 °C	kg _f /cm²	6075	34785	22370	21648		23746
7	FLE. Strength	ASTM D 790	23 °C	kg _f /cm²		855	753	623		584
8	SPECIFIC GRAVITY	ASTM D 792	23 °C	gm/cc		1.037	1.014	0.984	0.942	1.029
9	HDT AT 4.6 Kg/cm2	ASTM D 648	23 °c	ōС						

Note - Testing done on part level, test specimens cut from the actual molded part.

Part thickness was in the range of 2.5 to 2.7 mm.

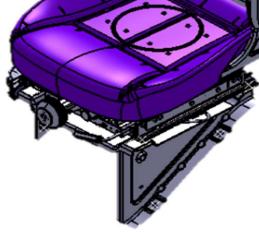
Sustainable Long Term Benefits- IMC

Weight reduction of 30% to 50% - Impact due to

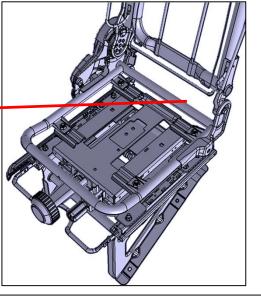
> Specific gravity difference between metal & plastics.

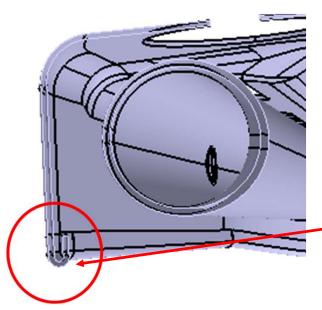
Cost reduction of 10% to 20% - Impact due to

- **Process cost** Combination of 2 process of extrusion & injection molding to 1 process of IMC.
- **Raw Material Cost** Elimination of RM cooling, drying, packing, transport and then re-melting granules in injection molding to make parts. Can select RM ingredients and compound & injection in 1 shot.
- **➤ Quality improvement** − Better Retention of Polymer properties by reducing one melting cycle


Process (Fabric Lamination) Eg of Seat Pan

Product – Seat Pan

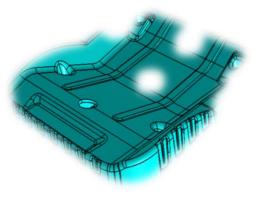




Base Structure & Pipe Frame Assly mounting 4 location Welding Operation to be done to Fix Metal Seat pan with Base Frame Structure and also as shown in fig Metal Curve Will be Welded on the Metal pipe.

U type feature for fabric hooking is Provided in Metal part, As shown Above With this U type Structure Fabric Hooking Can be Fixed.

Objective


Objective: Weight reduction of seat structure through conversion of metal seat pan to plastic composite seat pan.

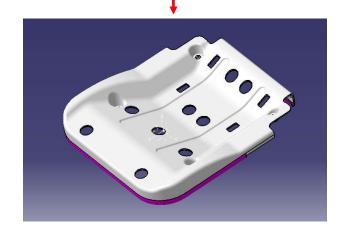
- Variants Multiple Variants
- Volumes ~1,00,000 Per Annum
- Tool To prove out to meet all Testing Requirements

Sheet metal Seat Pan

Weight Reduction by 30% -40% approx Part thickness 2.8 to 3.0 mm. Rib thickness can be maintained 1.1mm

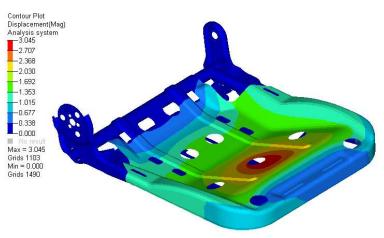
Plastic IMC Seat Pan

Evaluating Material Options


➤ Mfg. Process: Injection Moulding Composite

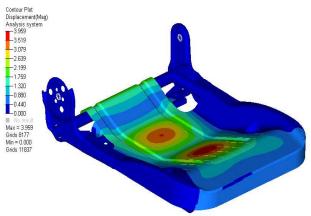
> Material: PPCGF 30% OR PA6 CGF 30%

Material Thickness: 3 mm for PPCGF 30%
OR
2.2/2.5 for PA6 CGF 30%


To

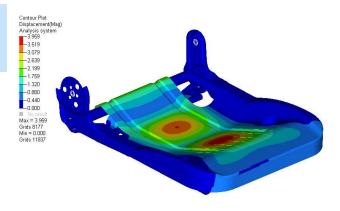
Plastic IMC

Finalised Material Option



Weight: 3.218 kg Thickness: 0.9 mm 13

Current design: Steel

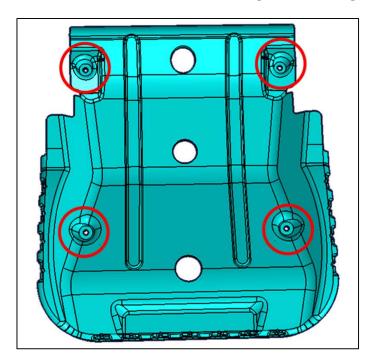

Displacement: 3.045 mm

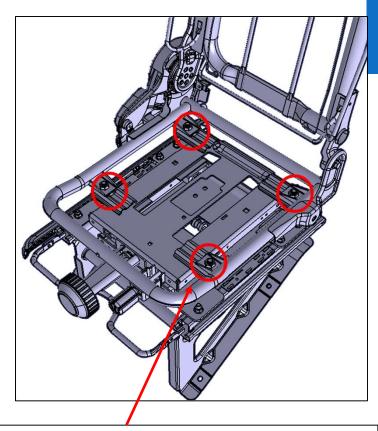
Proposed design: PP CGF 30 %

Displacement: 1.24 mm

Proposed design: PA 6 CGF 30%

Displacement: 0.95 mm

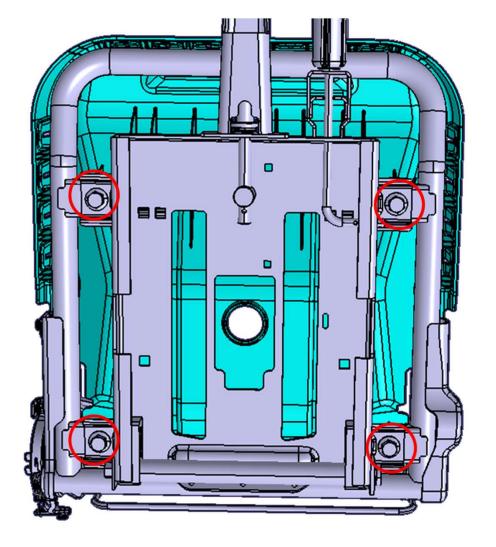

Weight: 1.125 kg

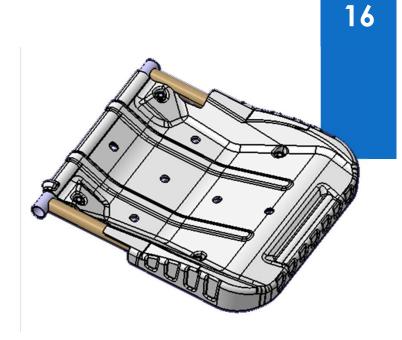

Thickness: 3 mm

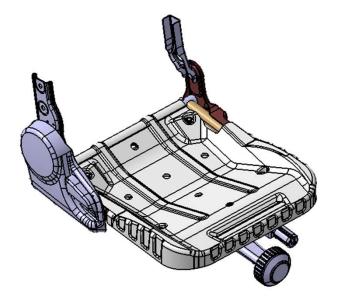
Challenges in Assembly of Plastic Seat Pan

Mounting Strategy

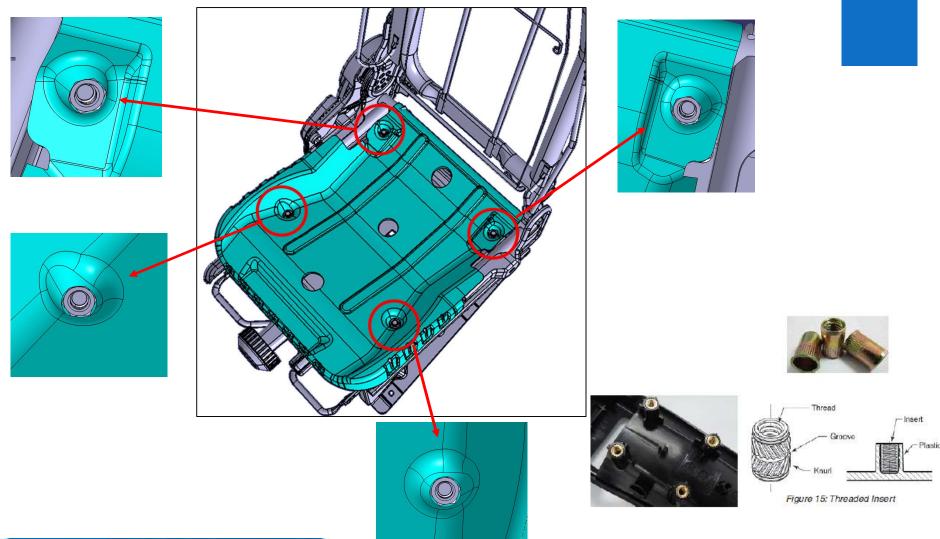
- ▶ Sheet Metal Seat Pan to be converted in the Plastic IMC.
- ▶ IMC Seat Pan with 04 Mountings for Fixing on Base structure

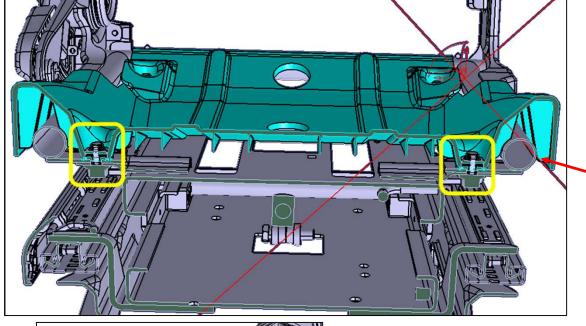



Base Structure & Pipe Frame Assly mounting 4 locations can be used for Plastic IMC Seat Pan Mounting in Seat Structure.

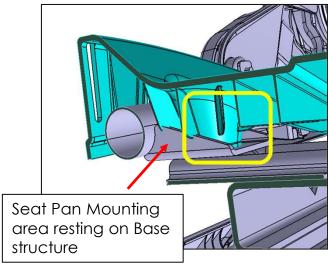

Welding operation will remove, due to integration of plastic IMC seat pan mountings with Base structure.

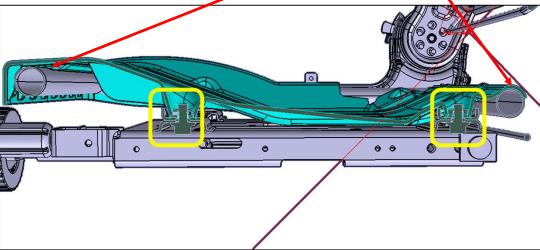
Part Fixing strategy

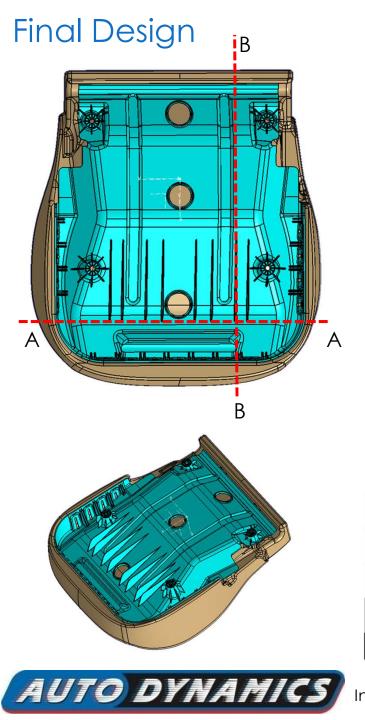


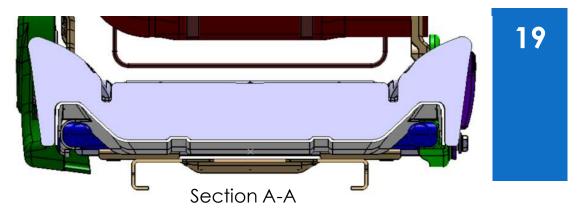


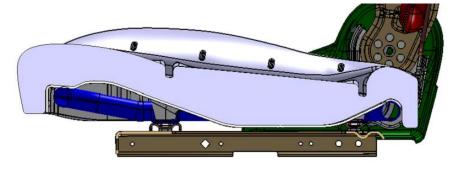
Part Fixing strategy – Top View

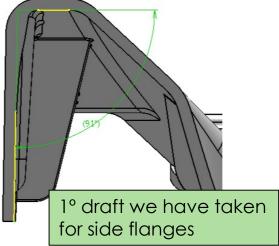

- Mounting of IMC Seat Pan on Base Structure.
- Threaded insert can be proposed in Plastic IMC Seat Pan & removal of bolting.



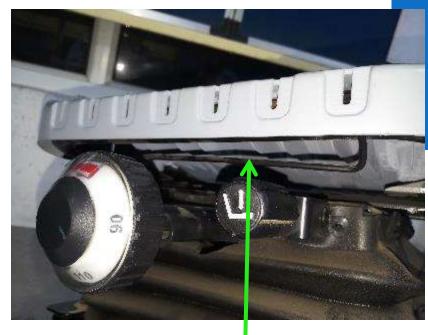

Plastic IMC Seat Pan will rested on Pipe frame structure.


There will be no twisting of seat pan after mounting.





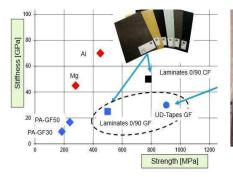
Section B-B


We have considered Complete A surface of sheet metal seat as it is in plastic IMC seat pan concept,

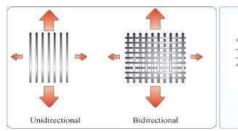
There is no change in profile in plastic IMC seat pan, **So it will not affected on Foam profile.**

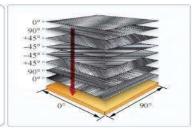
Integrity | Excellence | Customer Focus | Technology Edge | Responsibility

Seat Pan Assembly View on Structure



Wire Frame for Fabric **Hooking at Front** portion of Seat




Combination of IMC Process and Reinforced Thermoplastics Laminates

Enhancing IMC Capability



Items	unit	According to Standar	Value
Polymer		-	PP
Fiber		-	E-glass
Fiber content	vol.%	ISO 1172	45
Density	g/cm ³	ISO 1183-1	1.69
Thickness per layer	mm	-	0.5
Tensile strength	MPa	ISO 527-4	370
Tensile modulus	GPa	ISO 527-4	17
Flexural strength	MPa	ISO 14125	350
Flexural modulus	GPa	ISO 14125	16
Charpy notched impact strength kJ/m²		ISO 179	118

mold closing side

IR heater

laminate in open mold

mold injection side

Laminate Heating

Injection Molding

FG Part

Optimized design: PA 6 CGF 30% + PA Glass laminate

Weight: 0.9 kg

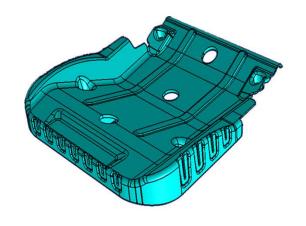
Thickness: 2.8 mm

(PA6 Thk: 2.3 mm & Laminate Thk: 0.5 mm)



Introduced PA 6 Glass Laminate

Molding in IMC with Glass Laminate


Seat Pan – Weight Reduction

Sheet Metal

WEIGHT 0.9 mm Thk. Sheet Metal = 1.40 kg

Plastic IMC

WEIGHT 2.8 mm Thk. (PA6 CGF 30% + PA GF Laminate) = 0.9 kg

Weight Reduction in Plastic IMC Seat Pan by 35-40%.

New Parts Developed with IMC Process

Seat Pan

Material: PA 6 – 30% + Glass laminate

Thickness: 2.2 - 2.6 mm

Weight reduction: 40% - 48 %

Foot Step

WEIGHT =2.698 kg(27% weight savings)
DEFLECTION OF MODEL=9.68 mm
STRESSES OF MODEL=88.05 Mpa

Tailgate Inner

Material: PPCGF 30%

Weight of Plastic Part: ~8.2 kg

Weight Reduction: 30%

Steering Wheel

Material: PA 6 – 40% LFT

Weight reduction: 40% - 48 %

String Ribbing for better strength & durability

Weight: 1.05 kg

Weight Reduction: (52% Saving)

Battery rear Tub

Weight of Plastic Part: 4.47 kg

Weight Reduction: 33%

Weight of Plastic Part: ~7.1 kg

Weight Reduction: 32%

Front End Carrier

Delivering Innovative solutions ahead of times to Automotive Industry

Mr. Anil George Managing Director

Mob No:+91 9049000101

Mr. Bhushan Khachane

Assistant Manager (Marketing and Business Development)

Mob No:+91 8956064087

AUTODYNAMIC TECHNOLOGIES& SOLUTIONS PVT. LTD. (ATSPL)

Raisoni Industrial Park, Hinjewadi, Pune – 411057 www.autodynamics.co.in